Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Phương trình \(x\left( {{x^2} - 1} \right)\sqrt {x - 1}  = 0\) có bao nhiêu

Câu hỏi số 302938:
Thông hiểu

Phương trình \(x\left( {{x^2} - 1} \right)\sqrt {x - 1}  = 0\) có bao nhiêu nghiệm ?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:302938
Phương pháp giải

Phương trình dạng \(f\left( x \right)g\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = 0\\g\left( x \right) = 0\end{array} \right.\).

Giải chi tiết

ĐKXĐ : \(x - 1 \ge 0 \Leftrightarrow x \ge 1\).

Ta có \(x\left( {{x^2} - 1} \right)\sqrt {x - 1}  = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 1 = 0\\x - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm 1\end{array} \right.\).

Kết hợp ĐKXĐ ta có \(x = 1\).

Thử lại khi \(x=1\) ta có \(0=0\) (luôn đúng) \( \Rightarrow S = \left\{ 1 \right\}\).

Vậy phương trình đã cho có 1 nghiệm duy nhất.

Chú ý khi giải

Tất cả mọi bài toán giải phương trình cần chú ý ĐKXĐ của phương trình.

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com