Tam thức \(f\left( x \right) = 3{x^2} + 2\left( {2m - 1} \right)x + m + 4\) dương với mọi \(x\) khi
Tam thức \(f\left( x \right) = 3{x^2} + 2\left( {2m - 1} \right)x + m + 4\) dương với mọi \(x\) khi
Đáp án đúng là: C
Sử dụng cho hàm số \(f\left( x \right) = a{x^2} + bx + c\)
Khi đó \(f\left( x \right) > 0\,;\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta ' = {{b'}^2} - ac < 0\end{array} \right.\)
Ta có \(f\left( x \right) = 3{x^2} + 2\left( {2m - 1} \right)x + m + 4\)
Để \(f\left( x \right) > 0\,;\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}3 > 0\left( {luon\,\,dung} \right)\\\Delta ' = {\left( {2m - 1} \right)^2} - 3\left( {m + 4} \right) < 0\end{array} \right. \Rightarrow 4{m^2} - 7m - 11 < 0 \Leftrightarrow - 1 < m < \dfrac{{11}}{4}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com