Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có mặt phẳng \(\left( {SAB} \right)\) vuông góc với mặt phẳng \(\left( {ABC}

Câu hỏi số 304967:
Thông hiểu

Cho hình chóp \(S.ABC\) có mặt phẳng \(\left( {SAB} \right)\) vuông góc với mặt phẳng \(\left( {ABC} \right)\) , tam giác \(ABC\) đều cạnh \(2a\) , tam giác \(SAB\) vuông cân tại \(S\). Tính thể tích hình chóp \(S.ABC\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:304967
Phương pháp giải

+) Công thức tính thể tích khối chóp có diện tích đáy \(S\) và chiều cao \(h\) là: \(V = \frac{1}{3}Sh.\)

+) Công thức tính diện tích tam giác đều cạnh \(a:\;\;S = \frac{{{a^2}\sqrt 3 }}{4}.\)

Giải chi tiết

Ta có: \({S_{ABC}} = \frac{{{{\left( {2a} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 .\)

Có \(\left( {SAB} \right) \cap \left( {ABC} \right) = AB.\)

Gọi \(H\) là hình chiếu của \(S\) trên \(AB \Rightarrow SH \bot AB \Rightarrow SH \bot \left( {ABC} \right).\)

\(\Delta SAB\) vuông cân tại \(S \Rightarrow SH = \frac{1}{2}AB = a.\) (tính chất đường trung tuyến

ứng với cạnh huyền của tam giác vuông).

\( \Rightarrow {V_{SABC}} = \frac{1}{3}SH.{S_{ABC}} = \frac{1}{3}.a.{a^2}\sqrt 3  = \frac{{{a^3}\sqrt 3 }}{3}.\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com