Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(K,M\) lần lượt là trung điểm

Câu hỏi số 305964:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(K,M\) lần lượt là trung điểm của các đoạn thẳng \(SA,SB,\,\,\,\left( \alpha  \right)\) là mặt phẳng qua \(K\) song song với \(AC\) và \(AM.\) Mặt phẳng \(\left( \alpha  \right)\) chia khối chóp \(S.ABCD\) thành hai khối đa diện. Gọi \({V_1}\) là thể tích của khối đa diện chứa đỉnh \(S\) và \({V_2}\) là thể tích khối đa diện còn lại. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:305964
Phương pháp giải

+) Sử dụng công thức tỉ lệ thể tích: Cho khối chóp S.ABC, các điểm \({A_1},\,\;{B_1},\,\;{C_1}\) lần lượt thuộc \(SA,\,\;SB,\,\;SC\). Khi đó:  \(\frac{{{V_{S.\,{A_1}{B_1}{C_1}}}}}{{{V_{S.ABC}}}} = \frac{{S{A_1}}}{{SA}}.\frac{{S{B_1}}}{{SB}}.\frac{{S{C_1}}}{{SC}}\)

+) Chia khối chóp đã cho thành các khối chóp nhỏ và tính thể tích của từng khối chóp.

Giải chi tiết

Từ K kẻ \(IK//AM\,\,\left( {I \in SB} \right),\,KJ//AC\,\,\left( {J \in SC} \right) \Rightarrow \left( \alpha  \right) \equiv \left( {IJK} \right)\) và  \(I,J\) lần lượt là trung điểm của SM, SC (do K là trung điểm của SA)

Trong (SAB), gọi N là giao điểm của IK và AB \( \Rightarrow \frac{{AN}}{{AB}} = \frac{{IM}}{{MB}} = \frac{1}{2}\)

Trong (ABCD), kẻ đường thẳng qua N song song AC, cắt AD tại Q, CD tại P.

Khi đó, dễ dàng chứng minh P, Q lần lượt là trung điểm của CD, AD  và \(\left( {IJK} \right) \equiv \left( {IJPQK} \right)\)

*)  \(\frac{{{V_{S.IJK}}}}{{{V_{S.ABC}}}} = \frac{{SK}}{{SA}}.\frac{{SI}}{{SB}}.\frac{{SJ}}{{SC}} = \frac{1}{2}.\frac{1}{4}.\frac{1}{2} = \frac{1}{{16}} \Rightarrow {V_{S.IJK}} = \frac{1}{{16}}{V_{S.ABC}} = \frac{1}{{32}}{V_{S.ABCD}}\)

*) Gọi L là trung điểm của SD.

Khi đó, khối đa diện SKJPQD được chia làm 2 khối: hình lăng trụ tam giác KJL.QPD và hình chóp tam giác S.KJL

\(\begin{array}{l}\frac{{{V_{S.ILK}}}}{{{V_{S.ADC}}}} = \frac{{SK}}{{SA}}.\frac{{SL}}{{SD}}.\frac{{SJ}}{{SC}} = \frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{1}{8} \Rightarrow {V_{S.LJK}} = \frac{1}{8}{V_{S.ADC}} = \frac{1}{{16}}{V_{S.ABCD}}\\{V_{KJL.QPD}} = 3{V_{L.PQD}} = 3.\frac{1}{3}.{d_{\left( {L;\left( {ABCD} \right)} \right)}}.{S_{PQD}} = 3.\frac{1}{3}.\frac{1}{2}{d_{\left( {S;\left( {ABCD} \right)} \right)}}.\frac{1}{4}{S_{ACD}} = \frac{3}{8}.\frac{1}{3}{d_{\left( {S;\left( {ABCD} \right)} \right)}}{S_{ACD}} = \frac{3}{8}{V_{S.ACD}} = \frac{3}{{16}}{V_{S.ABCD}}\\ \Rightarrow {V_1} = {V_{S.IJK}} + {V_{S.LJK}} + {V_{KJL.QPD}} = \frac{1}{{32}}{V_{S.ABCD}} + \frac{1}{{16}}{V_{S.ABCD}} + \frac{3}{{16}}{V_{S.ABCD}} = \frac{9}{{32}}{V_{S.ABCD}}\\ \Rightarrow {V_2} = \frac{{23}}{{32}}{V_{S.ABCD}} \Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{9}{{23}}.\end{array}\)

Chọn D.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com