Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu giá trị nguyên của \(m \in \left[ {0;2018} \right]\) để bất phương trình \(m +

Câu hỏi số 306576:
Vận dụng

Có bao nhiêu giá trị nguyên của \(m \in \left[ {0;2018} \right]\) để bất phương trình \(m + {e^{\frac{\pi }{2}}} \ge \sqrt[4]{{{e^{2x}} + 1}}\) có nghiệm với mọi \(x \in \mathbb{R}\)?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:306576
Phương pháp giải

Sử dụng phương pháp đồ thị hàm số giải bất phương trình.

Giải chi tiết

Để bất phương trình \(m + {e^{\frac{\pi }{2}}} \ge \sqrt[4]{{{e^{2x}} + 1}} = f\left( x \right)\) đúng với mọi \(x \in \mathbb{R}\) \( \Leftrightarrow m + {e^{\frac{\pi }{2}}} \ge \mathop {\max }\limits_{x \in \mathbb{R}} f\left( x \right)\)

Xét hàm số \(f\left( x \right) = \sqrt[4]{{{e^{2x}} + 1}}\) ta có: \(f'\left( x \right) = \dfrac{1}{4}{\left( {{e^{2x}} + 1} \right)^{\frac{{ - 3}}{4}}}.2{e^{2x}} > 0\,\,\forall x \in \mathbb{R}\).

BBT :

Dựa vào BBT ta thấy BPT nghiệm đúng với mọi \(x \in \mathbb{R} \Leftrightarrow m + {e^{\frac{\pi }{2}}} > 1 \Leftrightarrow m > 1 - {e^{\frac{\pi }{2}}} \approx  - 3,81\).

Kết hợp điều kiện đề bài \( \Rightarrow \left\{ \begin{array}{l}m \in \left[ {0;2018} \right]\\m \in \mathbb{Z}\end{array} \right. \Rightarrow \) có 2019 giá trị của m thỏa mãn.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com