Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số hạng không chứa x trong khai triển \({\left( {\sqrt[3]{x} + \dfrac{1}{{\sqrt[4]{x}}}} \right)^7}\)

Câu hỏi số 306577:
Vận dụng

Số hạng không chứa x trong khai triển \({\left( {\sqrt[3]{x} + \dfrac{1}{{\sqrt[4]{x}}}} \right)^7}\) bằng :

Đáp án đúng là: B

Quảng cáo

Câu hỏi:306577
Phương pháp giải

Sử dụng khai triển nhị thức Newton: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}} \).

Giải chi tiết

Ta có: \({\left( {\sqrt[3]{x} + \dfrac{1}{{\sqrt[4]{x}}}} \right)^7} = \sum\limits_{k = 0}^7 {C_7^k{{\left( {\sqrt[3]{x}} \right)}^{7 - k}}{{\left( {\dfrac{1}{{\sqrt[4]{x}}}} \right)}^k}}  = \sum\limits_{k = 0}^7 {C_7^k{x^{\dfrac{{7 - k}}{3}}}{x^{ - \dfrac{k}{4}}}}  = \sum\limits_{k = 0}^7 {C_7^k{x^{\dfrac{{7 - k}}{3} - \dfrac{k}{4}}}} \)

Số hạng không chứa x trong khai triển ứng với \(\dfrac{{7 - k}}{3} - \dfrac{k}{4} = 0 \Leftrightarrow \dfrac{{28 - 4k - 3k}}{{12}} = 0 \Leftrightarrow k = 4\).

Vậy số hạng không chứa x trong khai triển trên là \(C_7^4 = 35\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com