Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm m để mọi tiếp tuyến của đồ thị hàm số \(y = {x^3} - m{x^2} + \left( {2m - 3} \right)x - 1\)

Câu hỏi số 307397:
Thông hiểu

Tìm m để mọi tiếp tuyến của đồ thị hàm số \(y = {x^3} - m{x^2} + \left( {2m - 3} \right)x - 1\) đều có hệ số góc dương? 

Đáp án đúng là: C

Quảng cáo

Câu hỏi:307397
Phương pháp giải

Mọi tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \(M\left( {{x_0};\;f\left( {{x_0}} \right)} \right)\) có hệ số góc dương  \(f'\left( {{x_0}} \right) > 0\,\,\forall x \in \mathbb{R}.\)

Giải chi tiết

Ta có:\(y' = 3{x^2} - 2mx + 2m - 3.\)

Gọi \(M\left( {{x_0};\;{y_0}} \right)\)  là điểm thuộc đồ thị hàm số.

Khi đó đồ thị hàm số có các các tiếp tuyến có hệ số góc dương

\(\begin{array}{l} \Leftrightarrow f'\left( {{x_0}} \right) > 0 \Leftrightarrow 3{x^2} - 2mx + 2m - 3 > 0\,\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta ' < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3 > 0\,\,\left( {luon\,\,dung} \right)\\{m^2} - 3\left( {2m - 3} \right) < 0\end{array} \right. \Leftrightarrow {m^2} - 6m + 9 < 0 \Leftrightarrow {\left( {m - 3} \right)^2} < 0\;\;\left( {VN} \right)\end{array}\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com