Chứng minh mệnh đề “\(\forall n \in N,n \ge 3\) ta luôn có \({3^n} > {n^2} + 4n + 5\)” bằng phương
Chứng minh mệnh đề “\(\forall n \in N,n \ge 3\) ta luôn có \({3^n} > {n^2} + 4n + 5\)” bằng phương pháp quy nạp toán học, bước 1, ta kiểm tra với giá trị nào của \(n?\)
Đáp án đúng là: D
Quảng cáo
Dùng quy nạp chứng minh mệnh đề chứa biến \(A\left( n \right)\) đúng với mọi số tự nhiên \(n \ge p\) (\(p\) là một số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với \(n = p\)
Đáp án cần chọn là: D
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












