Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \sqrt {{x^2} - 2x + 4} \). Phương trình tiếp tuyến của đồ thị hàm

Câu hỏi số 310011:
Thông hiểu

Cho hàm số \(f\left( x \right) = \sqrt {{x^2} - 2x + 4} \). Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = 0\) là :

Đáp án đúng là: B

Quảng cáo

Câu hỏi:310011
Phương pháp giải

Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là : \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).

Giải chi tiết

Ta có: \(f'\left( x \right) = \dfrac{{2x - 2}}{{2\sqrt {{x^2} - 2x + 4} }} = \dfrac{{x - 1}}{{\sqrt {{x^2} - 2x + 4} }} \Rightarrow f'\left( 0 \right) = \dfrac{{ - 1}}{2}\) và \(f\left( 0 \right) = \sqrt 4  = 2\).

Vậy phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = 0\) là \(y =  - \dfrac{1}{2}\left( {x - 0} \right) + 2 = \dfrac{{ - 1}}{2}x + 2\).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com