Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Tìm hệ số của số hạng không chứa x trong khai triển \({\left( {\frac{x}{2} + \frac{4}{x}} \right)^{18}}\) với \(x \ne 0\)

Câu 310821: Tìm hệ số của số hạng không chứa x trong khai triển \({\left( {\frac{x}{2} + \frac{4}{x}} \right)^{18}}\) với \(x \ne 0\)

A. \({2^9}C_{18}^9\)  

B. \({2^{11}}C_{18}^7\)

C. \({2^8}C_{18}^8\)

D. \({2^8}C_{18}^{10}\)

Câu hỏi : 310821

Phương pháp giải:

Sử dụng công thức khai triển của nhị thức: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}.} \)

  • Đáp án : A
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Ta có: \({\left( {\frac{x}{2} + \frac{4}{x}} \right)^{18}} = \sum\limits_{k = 0}^{18} {C_{18}^k} {\left( {\frac{x}{2}} \right)^{18 - k}}{\left( {\frac{4}{x}} \right)^k} = \sum\limits_{k = 0}^{18} {C_{18}^k} {.2^{k - 18}}{.4^k}.{x^{18 - 2k}}\)

    Số hạng không chứa \(x\) trong khai triển là số hạng thứ \(k\) với: \(18 - 2k = 0\)

    \( \Rightarrow k = 9\)

    Vậy hệ số của số hạng không chứa \(x\) trong khai triển là: \(C_{18}^9{.2^{9 - 18}}{.4^9} = {2^9}.C_{18}^9\)

    Chọn A

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com