Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho số phức \(z = a + bi\,\,\left( {a,b \in \mathbb{R}} \right)\) thỏa mãn \(z + 1 + 3i - \left| z \right|i =

Câu hỏi số 311334:
Vận dụng

Cho số phức \(z = a + bi\,\,\left( {a,b \in \mathbb{R}} \right)\) thỏa mãn \(z + 1 + 3i - \left| z \right|i = 0\). Tính \(S = a - 3b\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:311334
Phương pháp giải

Đặt \(z = a + bi\), biến đổi VT về dạng \(A + Bi = 0 \Leftrightarrow A = B = 0\), từ đó tìm \(a,b\).

Giải chi tiết

Ta có:

\(z + 1 + 3i - \left| z \right|i = 0 \Leftrightarrow a + bi + 1 + 3i - \sqrt {{a^2} + {b^2}} .i = 0 \Leftrightarrow \left\{ \begin{array}{l}a + 1 = 0\\b + 3 - \sqrt {{a^2} + {b^2}}  = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 1\\b + 3 = \sqrt {1 + {b^2}} \end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a =  - 1\\b + 3 \ge 0\\{b^2} + 6b + 9 = 1 + {b^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 1\\b \ge  - 3\\b =  - \dfrac{4}{3}\,\,\left( {tm} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 1\\b =  - \dfrac{4}{3}\end{array} \right.\)

\(S = a - 3b =  - 1 - 3.\dfrac{{ - 4}}{3} =  - 1 + 4 = 3\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com