Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(2a\), \(SA = SB = SC = SD = 2a\). Gọi

Câu hỏi số 312414:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(2a\), \(SA = SB = SC = SD = 2a\). Gọi \(\varphi \) là góc giữa mặt phẳng \(\left( {SCD} \right)\) và \(\left( {ABCD} \right)\). Mệnh đề nào dưới đây là đúng ?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:312414
Phương pháp giải

+) Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\).

+) Góc giữa hai mặt phẳng là góc giữa 2 đường thẳng lần lượt thuộc hai mặt phẳng và vuông góc với giao tuyến. Xác định góc giữa \(\left( {SCD} \right)\) và \(\left( {ABCD} \right)\).

+) Tính tan của góc xác định được.

Giải chi tiết

Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\).

Gọi \(M\) là trung điểm của \(CD\) ta có \(\left\{ \begin{array}{l}CD \bot OM\\CD \bot SO\end{array} \right. \Rightarrow CD \bot \left( {SOM} \right) \Rightarrow CD \bot SM\).

\(\left\{ \begin{array}{l}\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\\left( {SCD} \right) \supset SM \bot CD\\\left( {ABCD} \right) \supset OM \bot CD\end{array} \right. \Rightarrow \angle \left( {\left( {SCD} \right);\left( {ABCD} \right)} \right) = \angle \left( {SM;OM} \right) = \angle SMO = \gamma \).

Ta có \(OM = \dfrac{1}{2}AD = \dfrac{1}{2}.2a = a\).

Tam giác \(SCD\) đều cạnh \(2a \Rightarrow SM = \dfrac{{2a\sqrt 3 }}{2} = a\sqrt 3 \).

\( \Rightarrow SO = \sqrt {S{M^2} - S{O^2}}  = \sqrt {3{a^2} - {a^2}}  = a\sqrt 2 \) (Định lí Pytago)

\( \Rightarrow \tan \gamma  = \tan \angle SMO = \dfrac{{SO}}{{OM}} = \dfrac{{a\sqrt 2 }}{a} = \sqrt 2 \).

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com