Có bao nhiêu giá trị nguyên của tham số \(m\) để với mọi \(x \in \mathbb{R}\), biểu thức \(f\left(
Có bao nhiêu giá trị nguyên của tham số \(m\) để với mọi \(x \in \mathbb{R}\), biểu thức \(f\left( x \right) = {x^2} + \left( {m + 2} \right)x + 8m + 1\) luôn nhận giá trị dương?
Đáp án đúng là: A
Quảng cáo
Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) có biệt thức \(\Delta = {b^2} - 4ac\)
- Nếu \(\Delta < 0\) thì với mọi \(x,f\left( x \right)\) có cùng dấu với hệ số \(a.\)
- Nếu \(\Delta = 0\) thì \(f\left( x \right)\) có nghiệm kép \(x = - \frac{b}{{2a}}\), với mọi \(x \ne - \frac{b}{{2a}},\,\,f\left( x \right)\) có cùng dấu với hệ số \(a.\)
- Nếu \(\Delta > 0\),\(f\left( x \right)\)có 2 nghiệm \({x_1},{x_2}\,\,\left( {{x_1} < {x_2}} \right)\) và luôn cùng dấu với hệ số \(a\) với mọi \(x\) ngoài khoảng \(\left( {{x_1};\;{x_2}} \right)\) và luôn trái dấu với hệ số \(a\) với mọi \(x\) trong khoảng \(\left( {{x_1};\;{x_2}} \right).\)
Đáp án cần chọn là: A
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












