Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng \({d_1}:\dfrac{{x - 1}}{2} = \dfrac{y}{1} =

Câu hỏi số 316431:
Thông hiểu

Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng \({d_1}:\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{{z + 2}}{{ - 2}},\) \({d_2}:\dfrac{{x + 2}}{{ - 2}} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{z}{2}\). Xét vị trí tương đối của hai đường thẳng đã cho.

Đáp án đúng là: C

Quảng cáo

Câu hỏi:316431
Phương pháp giải

Giả sử \({d_1};{d_2}\) có 1 VTCP là \(\overrightarrow {{u_1}} ,\,\overrightarrow {{u_2}} \).

+) Nếu \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] = \overrightarrow 0  \Rightarrow {d_1}//{d_2}\) hoặc \({d_1} \equiv {d_2}\).

+) Lấy \(M \in {d_1}\). Kiểm tra xem \(M\) có thuộc \({d_2}\) hay không?

Giải chi tiết

Ta có: \({d_1}:\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{{z + 2}}{{ - 2}}\) có 1 véctơ chỉ phương là: \(\overrightarrow {{u_1}}  = \left( {2;1; - 2} \right)\)

          \({d_2}:\dfrac{{x + 2}}{{ - 2}} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{z}{2}\)có 1 véctơ chỉ phương là: \(\overrightarrow {{u_2}}  = \left( { - 2; - 1;2} \right)\)

Ta có: \(\overrightarrow {{u_1}}  =  - \overrightarrow {{u_2}} \)

Lấy \(M\left( {1;0; - 2} \right) \in {d_1}\). Ta có \(\dfrac{{1 + 2}}{{ - 2}} \ne \dfrac{{0 - 1}}{{ - 1}} \Rightarrow M \notin {d_2}\).

Vậy \({d_1};\,\,{d_2}\) là hai đường thẳng song song.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com