Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Tìm tập \(S\) tất cả các giá trị thực của tham số \(m\) để tồn tại duy nhất cặp số

Câu hỏi số 317430:
Vận dụng

Tìm tập \(S\) tất cả các giá trị thực của tham số \(m\) để tồn tại duy nhất cặp số \(\left( {x;\,y} \right)\) thỏa mãn \({\log _{{x^2} + {y^2} + 2}}\left( {4x + 4y - 6 + {m^2}} \right) \ge 1\) và \({x^2} + {y^2} + 2x - 4y + 1 = 0\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:317430
Phương pháp giải

+) Giải bất phương trình logarit cơ bản \({\log _a}f\left( x \right) \ge {\log _a}g\left( x \right)\,\,\left( {a > 1} \right) \Leftrightarrow f\left( x \right) \ge g\left( x \right)\), suy ra tập hợp các cặp số \(\left( {x;y} \right)\) là một hình tròn.

+) Tìm điều kiện để 2 đường biểu diễn tập hợp cặp số \(\left( {x;y} \right)\) có 1 điểm chung duy nhất.

Giải chi tiết

\(\begin{array}{l}{\log _{{x^2} + {y^2} + 2}}\left( {4x + 4y - 6 + {m^2}} \right) \ge 1 = {\log _{{x^2} + {y^2} + 2}}\left( {{x^2} + {y^2} + 2} \right)\\ \Leftrightarrow 4x + 4y - 6 + {m^2} \ge {x^2} + {y^2} + 2\,\,\left( {Do\,\,{x^2} + {y^2} + 2 > 1} \right)\\ \Leftrightarrow {x^2} + {y^2} - 4x - 4y - {m^2} + 8 \le 0\,\;\;\;\,\left( 1 \right)\end{array}\)

Ta có \({a^2} + {b^2} - c = 4 + 4 + {m^2} - 8 = {m^2}\).

Theo giả thiết ta có: \({x^2} + {y^2} + 2x - 4y + 1 = 0\,\;\;\;\,\left( 2 \right)\)

TH1: \(m = 0 \Rightarrow \left( 1 \right):\,\,{x^2} + {y^2} - 4x - 4y + 8 = 0 \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 0 \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 2\end{array} \right..\)

Cặp số \(\left( {x;y} \right) = \left( {2;2} \right)\) không thỏa mãn điều kiện (2).

TH2: \(m \ne 0 \Rightarrow {m^2} > 0 \Rightarrow \) Tập hợp các cặp số \(\left( {x;y} \right)\) thỏa mãn \(\left( 1 \right)\) là hình tròn \(\left( {{C_1}} \right)\) (kể cả biên) tâm \({I_1}\left( {2;2} \right)\) bán kính \({R_1} = m\).

Tập hợp các cặp số \(\left( {x;y} \right)\) thỏa mãn \(\left( 2 \right)\) là đường tròn \(\left( {{C_2}} \right)\) tâm \({I_2}\left( { - 1;2} \right)\) bán kính \({R_2} = \sqrt {1 + 4 - 1}  = 2\).

Để để tồn tại duy nhất cặp số \(\left( {x;\,y} \right)\) thỏa mãn 2 điều kiện (1) và (2) \( \Rightarrow \) Xảy ra 2 trường hợp sau:

TH1: \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) tiếp xúc ngoài \( \Leftrightarrow {I_1}{I_2} = {R_1} + {R_2} \Leftrightarrow \sqrt {{{\left( { - 1 - 2} \right)}^2} + {{\left( {2 - 2} \right)}^2}}  = m + 2\)

\( \Leftrightarrow 3 = m + 2 \Leftrightarrow m = 1\,\,\left( {tm} \right)\).

TH2: \(\left( {{C_1}} \right);\;\left( {{C_2}} \right)\) tiếp xúc trong và \({R_1} < {R_2} \Leftrightarrow \left\{ \begin{array}{l}{I_1}{I_2} = \left| {{R_1} - {R_2}} \right|\\m < 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3 = \left| {m - 2} \right|\\m < 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 5\\m =  - 1\end{array} \right.\\m < 2\end{array} \right. \Leftrightarrow m =  - 1\,\,\left( {tm} \right)\).

Vậy \(S = \left\{ { \pm 1} \right\}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com