Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Có tất cả bao nhiêu giá trị nguyên của tham số \(a\) thuộc khoảng \(\left( {0;2019} \right)\) để

Câu hỏi số 317431:
Vận dụng

Có tất cả bao nhiêu giá trị nguyên của tham số \(a\) thuộc khoảng \(\left( {0;2019} \right)\) để \(\lim \sqrt {\frac{{{9^n} + {3^{n + 1}}}}{{{5^n} + {9^{n + a}}}}}  \le \frac{1}{{2187}}\)?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:317431
Phương pháp giải

Chia cả tử và mẫu cho \({9^n}\).

Giải chi tiết

\(\begin{array}{l}\lim \sqrt {\frac{{{9^n} + {3^{n + 1}}}}{{{5^n} + {9^{n + a}}}}}  = \lim \sqrt {\frac{{{9^n} + {{3.3}^n}}}{{{5^n} + {9^n}{{.9}^a}}}}  = \lim \sqrt {\frac{{1 + 3.{{\left( {\frac{3}{9}} \right)}^n}}}{{{{\left( {\frac{5}{9}} \right)}^n} + {9^a}}}}  = \frac{1}{{{3^a}}}\\ \Rightarrow \frac{1}{{{3^a}}} \le \frac{1}{{2187}} = \frac{1}{{{3^7}}} \Leftrightarrow {3^a} \ge {3^7} \Leftrightarrow a \ge 7.\end{array}\)

Kết hợp điều kiện đề bài \( \Rightarrow \left\{ \begin{array}{l}a \in \left[ {7;2019} \right)\\a \in \mathbb{Z}\end{array} \right. \Rightarrow a \in \left\{ {7;\;8;\;9;...;\;2018} \right\}\).

Vậy có \(2018 - 7 + 1 = 2012\) giá trị của \(a\) thỏa mãn.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com