Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hình giải tích phẳng

Câu hỏi số 31812:

Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD có đường chéo AC có phương trình là x + y - 10 = 0. Tìm tọa độ của điểm B biết rằng đường thẳng CD đi qua điểm M(6;2), đường thẳng AB đi qua điểm N(5; 8).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:31812
Giải chi tiết

Gọi M' là điểm đối xứng của M qua AC. Ta có M' thuộc đường thẳng BC.

Phương trình đường thẳng MM' là 1(x - 6) - 1(y - 2) = 0 <=> x - y - 4 = 0. Gọi H = AC ∩ MM'

Tọa độ của H thỏa mãn hệ \left\{\begin{matrix} x+y-10=0 & \\ x-y-4=0 & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=7 & \\ y=3 & \end{matrix}\right.  =>  H(7; 3)

H là trung điểm của MM'. Suy ra M'(8; 4)

Gọi \vec{n_{AB}}= (a; b) . Vì hai đường thẳng AB và AC tạo với nhau một góc 450 nên ta có:

cos 450 = \frac{\left | a+b \right |}{\sqrt{1^{2}+1^{2}}.\sqrt{a^{2}+b^{2}}}\Leftrightarrow \sqrt{a^{2}+b^{2}} = |a + b| ⇔ ab = 0\Leftrightarrow \left [ \begin{matrix} a=0 & \\ b=0 & \end{matrix}\right.

TH1: a = 0, phương trình đường thẳng AB, BC lần lượt là y = 8, x = 8. Suy ra: B(8; 8)

TH2: b = 0, phương trình đường thẳng AB, BC lần lượt là y = 5, x = 4. Suy ra: B(5; 4)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com