Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi và góc tạo bởi các mặt phẳng \(\left( {SAB} \right),\left( {SBC} \right),\)\(\left( {SCD} \right),\,\left( {SDA} \right)\) với mặt đáy lần lượt là \({90^0},\,{60^0},\,{60^0},\,{60^0}\). Biết rằng tam giác SAB vuông cân tại S, \(AB = a\) và chu vi tứ giác \(ABCD\) là \(9a\). Tính thể tích V của khối chóp S.ABCD

Câu 318273: Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi và góc tạo bởi các mặt phẳng \(\left( {SAB} \right),\left( {SBC} \right),\)\(\left( {SCD} \right),\,\left( {SDA} \right)\) với mặt đáy lần lượt là \({90^0},\,{60^0},\,{60^0},\,{60^0}\). Biết rằng tam giác SAB vuông cân tại S, \(AB = a\) và chu vi tứ giác \(ABCD\) là \(9a\). Tính thể tích V của khối chóp S.ABCD

A. \(V = \dfrac{{{a^3}\sqrt 3 }}{4}\).

B. \(V = {a^3}\sqrt 3 \).

C. \(V = \dfrac{{2{a^3}\sqrt 3 }}{9}\).

D. \(V = \dfrac{{{a^3}\sqrt 3 }}{9}\).

Câu hỏi : 318273

Phương pháp giải:

Xác định hình chiếu H của S lên mặt phẳng (ABCD)


Thể tích của khối chóp S.ABCD là: \(V = \dfrac{1}{3}{S_{ABCD}}.SH\).

  • Đáp án : D
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Gọi \(H\) là trung điểm của AB, do  tam giác SAB vuông cân tại S \( \Rightarrow SH \bot AB\) và \(SH = \dfrac{{AB}}{2} = \dfrac{a}{2}\)

    Mà \(\left( {SAB} \right) \bot \left( {ABCD} \right),\left( {SAB} \right) \cap \left( {ABCD} \right) = AB \Rightarrow SH \bot \left( {ABCD} \right)\)

    Dựng \(HI \bot BC,HJ \bot AD,HK \bot CD\). Do góc tạo bởi các mặt phẳng \(\left( {SBC} \right),\)\(\left( {SCD} \right),\,\left( {SDA} \right)\) với mặt đáy lần lượt là \({60^0},\,{60^0},\,{60^0}\) nên \(\widehat {SIH} = \widehat {SJH} = \widehat {SKH} = {60^0}\)\( \Rightarrow \Delta SIH = \Delta SJH = \Delta SKH\,\left( {g.c.g} \right)\)\( \Rightarrow IH = JH = KH\)

    \(\Delta SHI\) vuông tại H \( \Rightarrow HI = \dfrac{{SH}}{{\tan \widehat {SIH}}} = \dfrac{{\dfrac{a}{2}}}{{\tan {{60}^0}}} = \dfrac{a}{{2\sqrt 3 }}\)\( \Rightarrow IH = JH = KH = \dfrac{a}{{2\sqrt 3 }}\)

    Ta có: \({S_{ABCD}} = {S_{HBC}} + {S_{HCD}} + {S_{HAC}} = \dfrac{1}{2}IH.BC + \dfrac{1}{2}JH.AD + \dfrac{1}{2}KH.CD = \dfrac{1}{2}.\dfrac{a}{{2\sqrt 3 }}.\left( {BC + AD + CD} \right)\)\( = \dfrac{1}{2}.\dfrac{a}{{2\sqrt 3 }}.\left( {9a - a} \right)\) (do chu vi tứ giác ABCD là 9a) \( = \dfrac{1}{2}.\dfrac{a}{{2\sqrt 3 }}.8a = \dfrac{{2{a^2}}}{{\sqrt 3 }}\)

    Thể tích V của khối chóp S.ABCD là: \(V = \dfrac{1}{3}{S_{ABCD}}.SH = \dfrac{1}{3}.\dfrac{{2{a^2}}}{{\sqrt 3 }}.\dfrac{a}{2} = \)\(\dfrac{{{a^3}\sqrt 3 }}{9}\).

    Chọn: D 

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com