Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian \(Oxyz\), cho \(A\left( {2;0;0} \right),\,\,B\left( {0;4;0} \right),\,\,C\left( {0;0;6}

Câu hỏi số 318490:
Vận dụng

Trong không gian \(Oxyz\), cho \(A\left( {2;0;0} \right),\,\,B\left( {0;4;0} \right),\,\,C\left( {0;0;6} \right),\,\,D\left( {2;4;6} \right)\). Gọi \(\left( P \right)\) mặt phẳng song song với \(mp\left( {ABC} \right)\), \(\left( P \right)\) cách đều \(D\) và mặt phẳng \(\left( {ABC} \right)\). Phương trình của \(\left( P \right)\) là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:318490
Phương pháp giải

Phương trình mặt chắn của mặt phẳng đi qua \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right),\,\,\left( {a,b,c \ne 0} \right)\) là:\(\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1\)

Giải chi tiết

Phương trình mặt phẳng \(\left( {ABC} \right)\) là: \(\dfrac{x}{2} + \dfrac{y}{4} + \dfrac{z}{6} = 1 \Leftrightarrow 6x + 3y + 2z - 12 = 0\)

 \(//\left( {ABC} \right) \Rightarrow \left( P \right):\) \(6x + 3y + 2z + m = 0,\,\left( {m \ne  - 12} \right)\)

\(d\left( {D;\left( P \right)} \right) = \dfrac{{\left| {6.2 + 3.4 + 2.6 + m} \right|}}{{\sqrt {{6^2} + {3^2} + {2^2}} }} = \dfrac{{\left| {36 + m} \right|}}{7}\)

\(d\left( {\left( {ABC} \right);\left( P \right)} \right) = d\left( {A;\left( P \right)} \right) = \dfrac{{\left| {6.2 + 3.0 + 2.0 + m} \right|}}{{\sqrt {{6^2} + {3^2} + {2^2}} }} = \dfrac{{\left| {12 + m} \right|}}{7}\) (do \(\left( P \right)//\left( {ABC} \right)\))

Theo đề bài, ta có:

\(\dfrac{{\left| {36 + m} \right|}}{7} = \dfrac{{\left| {12 + m} \right|}}{7} \Leftrightarrow \left| {36 + m} \right| = \left| {12 + m} \right| \Leftrightarrow \left[ \begin{array}{l}36 + m = 12 + m\,\,\left( {vo\,\,nghiem} \right)\\36 + m =  - 12 - m\end{array} \right. \Leftrightarrow m =  - 24\,\,\left( {tm} \right)\)

Vậy, \(\left( P \right):6x + 3y + 2z - 24 = 0\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com