Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biết rằng \(\int\limits_0^1 {\frac{{dx}}{{3x + 5\sqrt {3x + 1}  + 7}} = a\ln 2 + b\ln 3 + c\ln 5} \) với

Câu hỏi số 318741:
Vận dụng

Biết rằng \(\int\limits_0^1 {\frac{{dx}}{{3x + 5\sqrt {3x + 1}  + 7}} = a\ln 2 + b\ln 3 + c\ln 5} \) với \(a,b,c\) là các số hữu tỉ.  Giá trị của \(a + b + c\) bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:318741
Phương pháp giải

Tính tích phân bằng phương pháp đổi biến.

Giải chi tiết

\(I = \int\limits_0^1 {\frac{{dx}}{{3x + 5\sqrt {3x + 1}  + 7}} = \int\limits_0^1 {\frac{{dx}}{{3x + 1 + 5\sqrt {3x + 1}  + 6}}} } \)

Đặt \(\sqrt {3x + 1}  = t \Rightarrow {t^2} = 3x + 1 \Rightarrow 2tdt = 3dx \Leftrightarrow dx = \frac{2}{3}tdt.\)

Đổi cận: \(\left\{ \begin{array}{l}x = 1 \Rightarrow t = 2\\x = 0 \Rightarrow t = 1\end{array} \right..\)

\(\begin{array}{l} \Rightarrow I = \int\limits_1^2 {\frac{2}{3}\frac{{tdt}}{{{t^2} + 5t + 6}} = } \frac{2}{3}\int\limits_1^2 {\frac{{tdt}}{{\left( {t + 2} \right)\left( {t + 3} \right)}}}  = \frac{2}{3}\int\limits_1^2 {\left( {\frac{3}{{t + 3}} - \frac{2}{{t + 2}}} \right)dt} \\ = \frac{2}{3}\left. {\left( {3\ln \left| {t + 3} \right| - 2\ln \left| {t + 2} \right|} \right)} \right|_1^2 = \frac{2}{3}\left( {3\ln 5 - 2\ln 4 - 3\ln 4 + 2\ln 3} \right)\\ = \frac{2}{3}\left( {3\ln 5 + 2\ln 3 - 5\ln 4} \right) = \frac{2}{3}\left( { - 10\ln 2 + 2\ln 3 + 3\ln 5} \right) =  - \frac{{20}}{3}\ln 2 + \frac{4}{3}\ln 3 + 2\ln 5.\\ \Rightarrow \left\{ \begin{array}{l}a =  - \frac{{20}}{3}\\b = \frac{4}{3}\\c = 2\end{array} \right. \Rightarrow a + b + c =  - \frac{{10}}{3}.\end{array}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com