Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giả sử \({z_1},\,{z_2}\) là hai trong các số phức \(z\) thỏa mãn \(\left( {z - 6} \right)\left( {8 +

Câu hỏi số 318750:
Vận dụng cao

Giả sử \({z_1},\,{z_2}\) là hai trong các số phức \(z\) thỏa mãn \(\left( {z - 6} \right)\left( {8 + \overline {zi} } \right)\) là số thực. Biết rằng \(\left| {{z_1} - {z_2}} \right| = 4.\) Giá trị nhỏ nhất của \(\left| {{z_1} + 3{z_2}} \right|\) bằng:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:318750
Giải chi tiết

Giả sử \(z = x + yi\). Gọi \(A,\,\,B\) lần lượt là các điểm biểu diễn cho số phức \({z_1},\,\,{z_2}\) ta có \(AB = 4\).

Ta có:

\(\begin{array}{l}\left( {z - 6} \right)\left( {8 + \overline {zi} } \right) = \left( {x + yi - 6} \right)\left( {8 + \overline {\left( {x + yi} \right)i} } \right) = \left[ {\left( {x - 6} \right) + yi} \right]\left( {8 - xi - y} \right)\\ = \left[ {\left( {x - 6} \right) + yi} \right]\left[ {\left( {8 - y} \right) - xi} \right] = \left( {x - 6} \right)\left( {8 - y} \right) + xy + \left[ {\left( {8 - y} \right)y - \left( {x + 6} \right)x} \right]i\\ = 8x - xy - 48 + 6y + xy - \left( {{x^2} + {y^2} + 6x - 8y} \right)i\\ = 8x + 6y - 48 - \left( {{x^2} + {y^2} + 6x - 8y} \right)i\end{array}\)

Theo bài ra ta có \({x^2} + {y^2} - 6x - 8y = 0\).

\( \Rightarrow A,B \in \left( C \right):\,\,{x^2} + {y^2} - 6x - 8y = 0\) là đường tròn tâm \(\left( {4;3} \right)\) bán kính \(R = 5\).

Xét điểm \(M\) thỏa mãn \(\overrightarrow {MA}  + 3\overrightarrow {MB}  = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {MO}  + \overrightarrow {OA}  + 3\overrightarrow {MO}  + \overrightarrow {OB}  = \overrightarrow 0  \Leftrightarrow \overrightarrow {OA}  + 3\overrightarrow {OB}  = 4\overrightarrow {OM} \)

Gọi \(H\) là trung điểm của \(AB\) ta có : \(H{I^2} = {R^2} - H{B^2} = 21,\,\,IM = \sqrt {H{I^2} + H{M^2}}  = \sqrt {22} \).

\( \Rightarrow \) M thuộc đường tròn \(\left( T \right)\) tam \(I\left( {3;4} \right)\) bán kính \(R' = \sqrt {22} \).

Ta có : \(\left| {{z_1} + 3{z_2}} \right| = \left| {\overrightarrow {OA}  + 3\overrightarrow {OB} } \right| = \left| {4\overrightarrow {OM} } \right| = 4OM\)

\( \Rightarrow {\left| {{z_1} + 3{z_2}} \right|_{\min }} \Leftrightarrow O{M_{\min }} = \left| {OI - R'} \right| = 5 - \sqrt {22} \).

Vậy \({\left| {{z_1} + 3{z_2}} \right|_{\min }} = 4\left( {5 - \sqrt {22} } \right) = 20 - 4\sqrt {22} \).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com