Cho nửa đường tròn tâm O, đường kính AB = 2R. Gọi M là điểm chính giữa của cung AB, N là
Cho nửa đường tròn tâm O, đường kính AB = 2R. Gọi M là điểm chính giữa của cung AB, N là điểm bất kỳ thuộc cung MB (N khác M và B). Tia AM và AN cắt tiếp tuyến tại B của nửa đường tròn tâm O lần lượt tại C và D.
1. Tính số đo góc tam giác ACB
2. Chứng minh tứ giác MNDC nội tiếp trong một đường tròn.
3. Chứng minh AM.AC = AN.AD = 4R2.
Quảng cáo
1. Sử dụng tính chất và dấu hiệu nhận biết tam giác vuông cân.
2) Chứng minh tứ giác MNDC nội tiếp trong một đường tròn bằng cách chứng minh góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối diện (\(\angle MCD = \angle ANM = {45^o}\))
3) Chứng minh \(\Delta AMN \sim \Delta ADC\) (g.g) và sử dụng hệ thức lượng trong tam giác vuông ABC đường cao BM để suy ra đpcm.
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










