Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập nghiệm của bất phương trình \(\left| {{x^2} + 3x - 4} \right| < x - 8\) là:

Câu hỏi số 319646:
Vận dụng

Tập nghiệm của bất phương trình \(\left| {{x^2} + 3x - 4} \right| < x - 8\) là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:319646
Phương pháp giải

Tập nghiệm của bất phương trình \(\left| {{x^2} + 3x - 4} \right| < x - 8\) là:

Giải chi tiết

\(\left| {{x^2} + 3x - 4} \right| < x - 8 \Leftrightarrow \left\{ \begin{array}{l}x - 8 > 0\\8 - x < {x^2} + 3x - 4\\{x^2} + 3x - 4 < x - 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 8\\{x^2} + 4x - 12 > 0\\{x^2} + 2x + 4 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 8\\\left( {x - 2} \right)\left( {x + 6} \right) > 0\\{\left( {x + 1} \right)^2} + 3 < 0\,\,\,\,\left( {VN} \right)\end{array} \right.\)

Vậy bất phương trình vô nghiệm.

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com