Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số nghiệm của phương trình \({\log _2}\left( {\dfrac{{{{5.2}^x} - 8}}{{{2^x} + 2}}} \right) = 3 - x\)

Câu hỏi số 320265:
Thông hiểu

Số nghiệm của phương trình \({\log _2}\left( {\dfrac{{{{5.2}^x} - 8}}{{{2^x} + 2}}} \right) = 3 - x\) là

Đáp án đúng là: B

Quảng cáo

Câu hỏi:320265
Phương pháp giải

\({\log _a}b = c \Leftrightarrow b = {a^c}\).

Giải chi tiết

Ta có: 

\(\begin{array}{l}
{\log _2}\left( {\dfrac{{{{5.2}^x} - 8}}{{{2^x} + 2}}} \right) = 3 - x \Leftrightarrow \dfrac{{{{5.2}^x} - 8}}{{{2^x} + 2}} = {2^{3 - x}}\\
\Leftrightarrow \dfrac{{{{5.2}^x} - 8}}{{{2^x} + 2}} = \dfrac{8}{{{2^x}}} \Leftrightarrow \left( {{{5.2}^x} - 8} \right){.2^x} = 8.\left( {{2^x} + 2} \right)\\
\Leftrightarrow 5.{\left( {{2^x}} \right)^2} - {16.2^x} - 16 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{{2^x} = 4}\\
{{2^x} = {\rm{}} - \dfrac{4}{5}}
\end{array}} \right. \Leftrightarrow x = 2
\end{array}\)

Số nghiệm của phương trìn là 1.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com