Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và thỏa mãn \(f\left( x
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và thỏa mãn \(f\left( x \right) > 0,\,\,\forall x \in \mathbb{R}\). Biết \(f\left( 0 \right) = 1\) và \(f'\left( x \right) = \left( {6x - 3{x^2}} \right)f\left( x \right)\). Tìm tất cả các giá trị thực của tham số m để phương trình \(f\left( x \right) = m\) có nghiệm duy nhất.
Đáp án đúng là: A
Quảng cáo
Nguyên hàm hai vế. Xác định hàm số \(f\left( x \right)\).
Từ đó khảo sát hàm số \(f\left( x \right)\), tìm điều kiện để \(f\left( x \right) = m\) có nghiệm duy nhất.
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












