Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA \bot (ABCD)\) và \(SA = a\sqrt 6 .\) Giá

Câu hỏi số 321567:
Thông hiểu

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA \bot (ABCD)\) và \(SA = a\sqrt 6 .\) Giá trị \(\cos (\widehat {SC,(SAD)})\) bằng

Đáp án đúng là: B

Quảng cáo

Câu hỏi:321567
Phương pháp giải

Xác định góc, sử dụng lý thuyết góc giữa đường thẳng và mặt phẳng (nhỏ hơn \({90^0}\)) bằng góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.

Giải chi tiết

 

 

Ta có: \(CD \bot AD,CD \bot SA \Rightarrow CD \bot \left( {SDA} \right)\).

Do đó góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {SAD} \right)\) bằng góc giữa đường thẳng \(CS\) và đường thẳng \(DS\) hay \(\widehat {CSD}\).

Lại có \(SD = \sqrt {S{A^2} + A{D^2}}  = a\sqrt 7 ,SC = \sqrt {S{A^2} + A{C^2}}  = 2a\sqrt 2 ,CD = a\) nên áp dụng định lý hàm số cô sin cho tam giác \(SCD\) ta có:

\(\cos \widehat {CSD} = \dfrac{{S{D^2} + S{C^2} - C{D^2}}}{{2SD.SC}} = \dfrac{{7{a^2} + 8{a^2} - {a^2}}}{{2.a\sqrt 7 .2a\sqrt 2 }} = \dfrac{{\sqrt {14} }}{4}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com