Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đường thẳng \(d:\dfrac{{x - 1}}{1} = \dfrac{{y - 1}}{2} = \dfrac{{z - 1}}{2}\) và hai điểm \(A\left(

Câu hỏi số 321627:
Vận dụng

Cho đường thẳng \(d:\dfrac{{x - 1}}{1} = \dfrac{{y - 1}}{2} = \dfrac{{z - 1}}{2}\) và hai điểm \(A\left( {2;0; - 3} \right),B\left( {2; - 3;1} \right).\) Đường thẳng \(\Delta \) qua \(A\) và cắt \(d\) sao cho khoảng cách từ \(B\) đến \(\Delta \) nhỏ nhất. Phương trình của \(\Delta \) là

Đáp án đúng là: C

Quảng cáo

Câu hỏi:321627
Phương pháp giải

- Gọi điểm \(C\) là giao điểm của \(\Delta \) và \(d\).

- Tính khoảng cách từ \(B\) đến \(AC\) và tìm GTNN.

Giải chi tiết

Gọi \(C\left( {1 + t;1 + 2t;1 + 2t} \right)\) là giao điểm của \(\Delta \) và \(d\). Khi đó \(\overrightarrow {AC}  = \left( {t - 1;2t + 1;2t + 4} \right)\).

\(\overrightarrow {BA}  = \left( {0;3; - 4} \right),\overrightarrow {AC}  = \left( {t - 1;2t + 1;2t + 4} \right) \Rightarrow \left[ {\overrightarrow {BA} ,\overrightarrow {AC} } \right] = \left( {14t + 16; - 4t + 4; - 3t + 3} \right)\)

\(d\left( {B,\Delta } \right) = \dfrac{{\left| {\left[ {\overrightarrow {BA} ,\overrightarrow {AC} } \right]} \right|}}{{\left| {\overrightarrow {AC} } \right|}} = \dfrac{{\sqrt {{{\left( {14t + 16} \right)}^2} + {{\left( { - 4t + 4} \right)}^2} + {{\left( { - 3t + 3} \right)}^2}} }}{{\sqrt {{{\left( {t - 1} \right)}^2} + {{\left( {2t + 1} \right)}^2} + {{\left( {2t + 4} \right)}^2}} }}\)

Dùng MTCT (chức năng TABLE) nhập hàm \(f\left( x \right) = \dfrac{{{{\left( {14x + 16} \right)}^2} + {{\left( { - 4x + 4} \right)}^2} + {{\left( { - 3x + 3} \right)}^2}}}{{{{\left( {x - 1} \right)}^2} + {{\left( {2x + 1} \right)}^2} + {{\left( {2x + 4} \right)}^2}}}\)

Bước START nhập \( - 5\), bước END nhập \(5\) và bước STEP nhập \(1\).

Ta được kết quả \(f\left( x \right)\) min tại \(x =  - 1\) hay \(d\left( {B,\Delta } \right)\) min khi \(t =  - 1\).

Từ đó \(C\left( {0; - 1; - 1} \right)\) và \(\overrightarrow {CA}  = \left( {2;1; - 2} \right)\) nên \(AC\) có phương trình \(\dfrac{x}{2} = \dfrac{{y + 1}}{1} = \dfrac{{z + 1}}{{ - 2}}.\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com