Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm giá trị nhỏ nhất \(m\) và lớn nhất \(M\) của hàm số \(f\left( x \right) = 2\sqrt {x - 4}  +

Câu hỏi số 321955:
Vận dụng cao

Tìm giá trị nhỏ nhất \(m\) và lớn nhất \(M\) của hàm số \(f\left( x \right) = 2\sqrt {x - 4}  + \sqrt {8 - x} \).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:321955
Phương pháp giải

+) Tìm ĐKXĐ của hàm số.

+) Sử dụng phương pháp bình phương 2 vế.

+) Đánh giá, sử dụng BĐT Cô-si, chứng minh \(m \le f\left( x \right) \le M\).

Giải chi tiết

ĐKXĐ: \(\left\{ \begin{array}{l}x - 4 \ge 0\\8 - x \ge 0\end{array} \right. \Leftrightarrow 4 \le x \le 8\).

+) Ta có \({f^2}\left( x \right) = 4\left( {x - 4} \right) + 8 - x + 4\sqrt {\left( {x - 4} \right)\left( {8 - x} \right)}  = 3x - 8 + 4\sqrt {\left( {x - 4} \right)\left( {8 - x} \right)} \).

         \( \Leftrightarrow {f^2}\left( x \right) = 3\left( {x - 4} \right) + 4\sqrt {\left( {x - 4} \right)\left( {8 - x} \right)}  + 4\).

    Ta có \(\left\{ \begin{array}{l}x - 4 \ge 0\\\sqrt {\left( {x - 4} \right)\left( {8 - x} \right)}  \ge 0\end{array} \right. \Leftrightarrow {f^2}\left( x \right) \ge 4 \Leftrightarrow f\left( x \right) \ge 2\)

    Dấu "=" xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}x - 4 = 0\\\left( {x - 4} \right)\left( {8 - x} \right) = 0\end{array} \right. \Leftrightarrow x = 4\). Vậy \(m = 2\).

+) Với \(x \in \left[ {4;8} \right]\), áp dụng BĐT Cô-si ta có:

    \(\begin{array}{l}x - \dfrac{4}{5} = x - 4 + \dfrac{{16}}{5} \ge 2\sqrt {\left( {x - 4} \right).\dfrac{{16}}{5}}  = \dfrac{{8\sqrt {x - 4} }}{{\sqrt 5 }}\,\,\,\,\left( 1 \right)\\\dfrac{{44}}{5} - x = 8 - x + \dfrac{4}{5} \ge 2\sqrt {\left( {8 - x} \right)\dfrac{4}{x}}  = \dfrac{{4\sqrt {8 - x} }}{{\sqrt 5 }}\,\,\,\,\,\,\,\left( 2 \right)\end{array}\)

Cộng vế (1) với (2) ta có: \(\dfrac{{8\sqrt {x - 4}  + 4\sqrt {8 - x} }}{{\sqrt 5 }} \le x - \dfrac{4}{5} + \dfrac{{44}}{5} - x = 8\).

\( \Rightarrow \pi 8\sqrt {x - 4}  + 4\sqrt {8 - x\sqrt 5 }  \le 8 \Leftrightarrow \dfrac{{4f\left( x \right)}}{{\sqrt 5 }} \le 8 \Leftrightarrow f\left( x \right) \le 2\sqrt 5 \).

Dấu "=" xảy ra \( \Leftrightarrow x = \dfrac{{36}}{5}\). Vậy \(M = 2\sqrt 5 \).

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com