Cho parabol (P) có phương trình \(y = 2{x^2} - 3x - 1\). Tịnh tiến parabol (P) theo vectơ \(\overrightarrow v
Cho parabol (P) có phương trình \(y = 2{x^2} - 3x - 1\). Tịnh tiến parabol (P) theo vectơ \(\overrightarrow v \left( { - 1;4} \right)\) thu được đồ thị của hàm số nào dưới đây?
Đáp án đúng là: A
Quảng cáo
Phép tịnh tiến theo vectơ \(\overrightarrow v \left( {a;b} \right)\) biến \(M\left( {x;y} \right)\) thành \(M'\left( {x';y'} \right)\) thỏa mãn: \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\).
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












