Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \dfrac{{m{x^3}}}{3} - \dfrac{{m{x^2}}}{2} + \left( {3 - m} \right)x - 2\). Tìm

Câu hỏi số 324528:
Vận dụng

Cho hàm số \(f\left( x \right) = \dfrac{{m{x^3}}}{3} - \dfrac{{m{x^2}}}{2} + \left( {3 - m} \right)x - 2\). Tìm \(m\) để \(f'\left( x \right) > 0\) với mọi \(x \in \mathbb{R}\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:324528
Phương pháp giải

+) Sử dụng các công thức đạo hàm cơ bản tính \(f'\left( x \right)\).

+) Tam thức bậc hai \(a{x^2} + bx + c\,\,\left( {a \ne 0} \right)\) có \(\Delta  < 0\) thì luôn cùng dấu với hệ số \(a\).

Giải chi tiết

Ta có \(f'\left( x \right) = m{x^2} - mx + 3 - m\).

\(\begin{array}{l}f'\left( x \right) > 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m = 0\\f'\left( x \right) = 3 > 0\,\,\forall x \in \mathbb{R}\end{array} \right.\\\left\{ \begin{array}{l}m \ne 0\\1 > 0\,\,\left( {luon\,\,dung} \right)\\\Delta  = {m^2} - 4m\left( {3 - m} \right) < 0\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}m = 0\\5{m^2} - 12m < 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0\\0 < m < \dfrac{{12}}{5}\end{array} \right. \Leftrightarrow 0 \le m < \dfrac{{12}}{5}\end{array}\).

Chọn C.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com