Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 6x + 4y -

Câu hỏi số 325932:
Thông hiểu

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 6x + 4y - 12 = 0\). Mặt phẳng nào sau đây cắt \(\left( S \right)\) theo một đường tròn có bán kính \(r = 3\)?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:325932
Phương pháp giải

- Tính khoảng cách từ tâm mặt cầu đến \(\left( P \right)\), sử dụng công thức \(d = \sqrt {{R^2} - {r^2}} \).

- Đối chiếu với các đáp án: Kiểm tra \(d\left( {I,\left( P \right)} \right)\) bằng kết quả vừa tìm được ở trên và kết luận.

Giải chi tiết

Mặt cầu \(\left( S \right)\) có tâm \(I\left( {3; - 2;0} \right)\) và bán kính \(R = \sqrt {{3^2} + 0 + {2^2} + 12}  = 5\).

Khoảng cách từ \(I\) đến \(\left( P \right)\) là \(d\left( {I,\left( P \right)} \right) = \sqrt {{R^2} - {r^2}}  = \sqrt {{5^2} - {3^2}}  = 4\) .

Đối chiếu các đáp án ta thấy:

Đáp án A: \(d\left( {I,\left( P \right)} \right) = \dfrac{{\left| {4.3 - 3.\left( { - 2} \right) - 0 - 4\sqrt 6 } \right|}}{{\sqrt {{4^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 1} \right)}^2}} }} \ne 4\) nên loại A.

Đáp án B: \(d\left( {I,\left( P \right)} \right) = \dfrac{{\left| {2.3 + 2.\left( { - 2} \right) - 0 + 12} \right|}}{{\sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = \dfrac{{14}}{3} \ne 4\) nên loại B.

Đáp án C: \(d\left( {I,\left( P \right)} \right) = \dfrac{{\left| {3.3 - 4.\left( { - 2} \right) + 5.0 - 17 + 20\sqrt 2 } \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2} + {5^2}} }} = 4\) nên chọn C.

Chọn C.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com