Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong mặt phẳng \(Oxy,\) gọi \(A,B,C\) lần lượt là các điểm biểu diễn các số phức \({z_1} = 

Câu hỏi số 325941:
Thông hiểu

Trong mặt phẳng \(Oxy,\) gọi \(A,B,C\) lần lượt là các điểm biểu diễn các số phức \({z_1} =  - 3i;{z_2} = 2 - 2i;{z_3} =  - 5 - i.\) Gọi \(G\) là trọng tâm của tam giác \(ABC.\) Khi đó điểm \(G\) biểu diễn số phức là

Đáp án đúng là: B

Quảng cáo

Câu hỏi:325941
Phương pháp giải

+) Điểm \(z = a + bi\,\left( {a;b \in \mathbb{R}} \right)\) có điểm biểu diễn hình học là \(M\left( {a;b} \right)\)

+) Trọng tâm \(G\) của tam giác \(ABC\) có tọa độ \(\left\{ \begin{array}{l}{x_G} = \dfrac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \dfrac{{{y_A} + {y_B} + {y_C}}}{3}\end{array} \right.\)

Giải chi tiết

Từ bài ra ta có \(A\left( {0; - 3} \right);\,\,B\left( {2; - 2} \right);\,\,C\left( { - 5; - 1} \right)\)

\( \Rightarrow \)  Trọng tâm \(G\) của tam giác \(ABC\) có tọa độ \(\left\{ \begin{array}{l}{x_G} = \dfrac{{{x_A} + {x_B} + {x_C}}}{3} = \dfrac{{0 + 2 + \left( { - 5} \right)}}{3} =  - 1\\{y_G} = \dfrac{{{y_A} + {y_B} + {y_C}}}{3} = \dfrac{{ - 3 + \left( { - 2} \right) + \left( { - 1} \right)}}{3} =  - 2\end{array} \right. \Rightarrow G\left( { - 1; - 2} \right)\).

Điểm \(G\left( { - 1; - 2} \right)\) biểu diễn số phức \(z =  - 1 - 2i\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com