Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Gọi \(\left( S \right)\) là tập hợp đi qua 4 điểm \(A\left( {2;0;0} \right),\,\,B\left( {1;3;0}

Câu hỏi số 329938:
Vận dụng

Gọi \(\left( S \right)\) là tập hợp đi qua 4 điểm \(A\left( {2;0;0} \right),\,\,B\left( {1;3;0} \right),\,\,C\left( { - 1;0;3} \right),\,\,D\left( {1;2;3} \right)\). Tính bán kính \(R\) của mặt cầu \(\left( S \right)\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:329938
Phương pháp giải

+) Gọi \(I\left( {a;b;c} \right)\) là tâm của mặt cầu \(\left( S \right)\). Mặt cầu \(\left( S \right)\) đi qua bốn điểm \(A,B,C,D \Rightarrow \left\{ \begin{array}{l}IA = IB\\IB = IC\\IC = ID\end{array} \right.\).

 

+) Giải hệ 3 phương trình tìm \(a;b;c\). Tính \(R = IA\).

Giải chi tiết

Gọi \(I\left( {a;b;c} \right)\) là tâm của mặt cầu \(\left( S \right)\).

Mặt cầu \(\left( S \right)\) đi qua bốn điểm \(A,B,C,D \Rightarrow \left\{ \begin{array}{l}IA = IB\\IB = IC\\IC = ID\end{array} \right.\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}{\left( {a - 2} \right)^2} + {b^2} + {c^2} = {\left( {a - 1} \right)^2} + {\left( {b - 3} \right)^2} + {c^2}\\{\left( {a - 1} \right)^2} + {\left( {b - 3} \right)^2} + {c^2} = {\left( {a + 1} \right)^2} + {b^2} + {\left( {c - 3} \right)^2}\\{\left( {a + 1} \right)^2} + {b^2} + {\left( {c - 3} \right)^2} = {\left( {a - 1} \right)^2} + {\left( {b - 2} \right)^2} + {\left( {c - 3} \right)^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 4a + 4 =  - 2a + 1 - 6b + 9\\ - 2a + 1 - 6b + 9 = 2a + 1 - 6c + 9\\2a + 1 =  - 2a + 1 - 4b + 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 2a + 6b = 6\\ - 4a - 6b + 6c = 0\\4a + 4b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 1\\c = 1\end{array} \right. \Rightarrow I\left( {0;1;1} \right)\\ \Rightarrow R = IA = \sqrt {{{\left( {a - 2} \right)}^2} + {b^2} + {c^2}}  = \sqrt {{2^2} + {1^2} + {1^2}}  = \sqrt 6 \end{array}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com