Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian Oxyz, cho đường thẳng \(d:\dfrac{{x - 1}}{2} = \dfrac{{y + 3}}{{ - 1}} = \dfrac{{z - 5}}{3}\).

Câu hỏi số 331341:
Vận dụng

Trong không gian Oxyz, cho đường thẳng \(d:\dfrac{{x - 1}}{2} = \dfrac{{y + 3}}{{ - 1}} = \dfrac{{z - 5}}{3}\). Viết phương trình mặt cầu có tâm \(I\left( {5;1; - 1} \right)\) và tiếp xúc với 

Đáp án đúng là: B

Quảng cáo

Câu hỏi:331341
Phương pháp giải

Công thức khoảng cách từ điểm đến đường thẳng trong không gian:

      \(d\left( {A;\Delta } \right) = \dfrac{{\left| {\left[ {\overrightarrow u ;\overrightarrow {MA} } \right]} \right|}}{{\left| {\overrightarrow u } \right|}}\) , với \(\overrightarrow u \) là VTCP của \(\Delta \) và M là điểm bất kì thuộc \(\Delta \).

Giải chi tiết

Lấy \(M\left( {1; - 3;5} \right) \in d\)\( \Rightarrow \overrightarrow {MI} \left( {4;4; - 6} \right)\).

Đường thẳng d có 1 VTCP : \(\overrightarrow u \left( {2; - 1;3} \right)\)  \( \Rightarrow \left[ {\overrightarrow {MI} ;\overrightarrow u } \right] = \left( {6; - 24; - 12} \right)\)

\( \Rightarrow d\left( {I;d} \right) = \dfrac{{\left| {\left[ {\overrightarrow {MI} ;\overrightarrow u } \right]} \right|}}{{\left| {\overrightarrow u } \right|}} = \dfrac{{\sqrt {{6^2} + {{24}^2} + {{12}^2}} }}{{\sqrt {{2^2} + {1^2} + {3^2}} }} = \sqrt {54} \)

Mặt cầu có tâm \(I\left( {5;1; - 1} \right)\) và tiếp xúc với d có bán kính \(R = d\left( {I;d} \right) = \sqrt {54} \) có phương trình là:

\({\left( {x - 5} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 54\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com