Cho hàm số: \(f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}}\quad {\rm{khi}}\;\,\,x \ne 1\\a\quad \quad
Cho hàm số: \(f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}}\quad {\rm{khi}}\;\,\,x \ne 1\\a\quad \quad \quad {\rm{khi}}\,\,\;x = 1\end{array} \right.\) để \(f\left( x \right)\) liên tục tại điểm \(x_0^{} = 1\) thì \(a\) bằng?
Đáp án đúng là: C
Quảng cáo
Xét tính liên tục của hàm số tại \(x = 1\)
Hàm số liên tục tại \(x = a \Leftrightarrow f\left( a \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right).\)
Đáp án cần chọn là: C
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












