Biết hàm số \(y = \frac{1}{3}{x^3} + 3\left( {m - 1} \right){x^2} + 9x + 1\) nghịch biến trên khoảng
Biết hàm số \(y = \frac{1}{3}{x^3} + 3\left( {m - 1} \right){x^2} + 9x + 1\) nghịch biến trên khoảng \(\left( {{x_1};{x_2}} \right)\) và đồng biến trên các khoảng còn lại của tập xác định. Nếu \(\left| {{x_1} - {x_2}} \right| = 6\sqrt 3 \) thì có bao nhiêu giá trị nguyên dương của tham số \(m\) thỏa mãn đề bài?
Đáp án đúng là: B
Quảng cáo
Lập luận để có hàm số có hai điểm cực trị thỏa mãn \(\left| {{x_1} - {x_2}} \right| = 6\sqrt 3 \)
Từ đó sử dụng hệ thức Vi-et để tìm \(m.\)
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












