Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) cắt ba trục Ox, Oy, Oz lần lượt tại

Câu hỏi số 333398:
Vận dụng

Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) cắt ba trục Ox, Oy, Oz lần lượt tại A, B, C; trực tâm tam giác \(ABC\) là \(H\left( {1;2;3} \right)\). Phương trình của mặt phẳng (P) là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:333398
Phương pháp giải

\(H\) là trực tâm tam giác \(ABC \Leftrightarrow \left\{ \begin{array}{l}H \in \left( {ABC} \right)\\\overrightarrow {HA} .\overrightarrow {BC}  = 0\\\overrightarrow {HB} .\overrightarrow {AC}  = 0\end{array} \right.\).

Giải chi tiết

Giả sử \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right),\,\,\left( {a,b,c \ne 0} \right) \Rightarrow \left\{ \begin{array}{l}\left( P \right):\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1\\\overrightarrow {HA}  = \left( {a - 1; - 2; - 3} \right);\,\overrightarrow {HB}  = \left( { - 1;b - 2; - 3} \right)\\\overrightarrow {CB}  = \left( {0;b; - c} \right);\,\,\overrightarrow {AC}  = \left( { - a;0;c} \right)\end{array} \right.\)

\(H\) là trực tâm tam giác \(ABC \Leftrightarrow \left\{ \begin{array}{l}H \in \left( P \right)\\\overrightarrow {HA} .\overrightarrow {BC}  = 0\\\overrightarrow {HB} .\overrightarrow {AC}  = 0\end{array} \right.\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} = 1\\\left( {a - 1} \right).0 - 2.b - 3.\left( { - c} \right) = 0\\ - 1.\left( { - a} \right) + \left( {b - 2} \right).0 - 3.c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} = 1\\b = \dfrac{3}{2}c\\a = 3c\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{{3c}} + \dfrac{2}{{\dfrac{3}{2}c}} + \dfrac{3}{c} = 1\\b = \dfrac{3}{2}c\\a = 3c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{14}}{{3c}} = 1\\b = \dfrac{3}{2}c\\a = 3c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 14\\b = 7\\c = \dfrac{{14}}{3}\end{array} \right.\\ \Rightarrow \left( P \right):\dfrac{x}{{14}} + \dfrac{y}{7} + \dfrac{z}{{\dfrac{{14}}{3}}} = 1 \Leftrightarrow x + 2y + 3z - 14 = 0.\end{array}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com