Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số\(f\left( x \right) = {\left( {2x + 1} \right)^{12}}\). Tính \(f''\left( 0

Câu hỏi số 333613:
Thông hiểu

Cho hàm số\(f\left( x \right) = {\left( {2x + 1} \right)^{12}}\). Tính \(f''\left( 0 \right)\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:333613
Phương pháp giải

Sử dụng công thức tính đạo hàm \(\left( {{u^n}} \right)' = n{u^{n - 1}}u'\,\,\left( {u \ne  - 1} \right)\).

Giải chi tiết

Ta có

\(\begin{array}{l}f'\left( x \right) = 12{\left( {2x + 1} \right)^{11}}\left( {2x + 1} \right)' = 24{\left( {2x + 1} \right)^{11}}\\f''\left( x \right) = 24.11{\left( {2x + 1} \right)^{10}}.\left( {2x + 1} \right)' = 528{\left( {2x + 1} \right)^{10}}\\ \Rightarrow f''\left( 0 \right) = {528.1^{10}} = 528\end{array}\)

Chọn B.

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com