Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = \cos \sqrt {2{x^2} - x + 7} \). Khi đó \(y'\) bằng   

Câu hỏi số 333620:
Vận dụng

Cho hàm số \(y = \cos \sqrt {2{x^2} - x + 7} \). Khi đó \(y'\) bằng   

Đáp án đúng là: C

Quảng cáo

Câu hỏi:333620
Phương pháp giải

Sử dụng công thức \(\left( {\cos u} \right)' =  - u'.\sin u;\,\,\,\left( {\sqrt u } \right)' = \frac{{u'}}{{2\sqrt u }}\).

Giải chi tiết

\(\begin{array}{l}y' =  - \left( {\sqrt {2{x^2} - x + 7} } \right)'sin\sqrt {2{x^2} - x + 7} \\y' =  - \frac{{\left( {2{x^2} - x + 7} \right)'}}{{2\sqrt {2{x^2} - x + 7} }}sin\sqrt {2{x^2} - x + 7} \\y' = \frac{{ - 4x + 1}}{{2\sqrt {2{x^2} - x + 7} }}sin\sqrt {2{x^2} - x + 7} \\y' = \frac{{\left( {1 - 4x} \right)sin\sqrt {2{x^2} - x + 7} }}{{2\sqrt {2{x^2} - x + 7} }}\end{array}\)

Chọn C.

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com