Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

\(\mathop {\lim }\limits_{x \to 1} \dfrac{{x + \sqrt {{x^2} + 1} }}{{x + 1}} = a + b\sqrt 2 \,\,\left( {a,b \in

Câu hỏi số 334530:
Thông hiểu

\(\mathop {\lim }\limits_{x \to 1} \dfrac{{x + \sqrt {{x^2} + 1} }}{{x + 1}} = a + b\sqrt 2 \,\,\left( {a,b \in \mathbb{Q}} \right).\) Tính \(a + b\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:334530
Phương pháp giải

Hàm số \(y = f\left( x \right)\) liên tục tại \(x = {x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Giải chi tiết

Hàm số \(y = \dfrac{{x + \sqrt {{x^2} + 1} }}{{x + 1}}\) có TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\} \Rightarrow \) Hàm số liên tục tại \(x = 1\).

\(\begin{array}{l} \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{x + \sqrt {{x^2} + 1} }}{{x + 1}} = \dfrac{{1 + \sqrt {{1^2} + 1} }}{{1 + 1}} = \dfrac{{1 + \sqrt 2 }}{2} = \dfrac{1}{2} + \dfrac{1}{2}\sqrt 2 \\ \Rightarrow \left\{ \begin{array}{l}a = \dfrac{1}{2}\\b = \dfrac{1}{2}\end{array} \right. \Rightarrow a + b = \dfrac{1}{2} + \dfrac{1}{2} = 1\end{array}\)

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com