Cho mặt phẳng \(\left( P \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường
Cho mặt phẳng \(\left( P \right)\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn bán kính \(2R\), biết khoảng cách từ tâm của mặt cầu \(\left( S \right)\) đến mặt phẳng \(\left( P \right)\) là \(R.\) Diện tích mặt cầu đã cho bằng
Đáp án đúng là: A
Quảng cáo
Mặt phẳng \(\left( P \right)\) cắt mặt cầu \(\left( S \right)\)có tâm \(I\) và bán kính \(R\) theo giao tuyến là đường tròn \(\left( C \right)\) có bán kính \(r\) , biết khoảng cách từ tâm \(I\) đến mặt phẳng \(\left( P \right)\) là \(d\left( {I;\left( P \right)} \right) = h\). Khi đó ta có mối liên hệ \({R^2} = {h^2} + {r^2}\) .
Diện tích mặt cầu bán kính \(R\) là \(S = 4\pi {R^2}\)
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












