Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập nghiệm của bất phương trình \(\left( {\sqrt {2x + 4}  - \sqrt {x + 1} } \right)\left( {\sqrt {2x + 1} 

Câu hỏi số 338538:
Vận dụng cao

Tập nghiệm của bất phương trình \(\left( {\sqrt {2x + 4}  - \sqrt {x + 1} } \right)\left( {\sqrt {2x + 1}  + \sqrt {x + 4} } \right) \le x + 3\) là tập con của tập hợp nào sau đây?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:338538
Phương pháp giải

Nhân liên hợp và nhóm nhân tử chung để giải bất phương trình.

Giải chi tiết

ĐKXĐ: \(x \ge  - \frac{1}{2}\)

\(\begin{array}{l}\,\,\,\,\,\,\,\,\left( {\sqrt {2x + 4}  - \sqrt {x + 1} } \right)\left( {\sqrt {2x + 1}  + \sqrt {x + 4} } \right) \le x + 3\\ \Leftrightarrow \left( {\sqrt {2x + 4}  - \sqrt {x + 1} } \right)\left( {\sqrt {2x + 4}  + \sqrt {x + 1} } \right)\left( {\sqrt {2x + 1}  + \sqrt {x + 4} } \right) \le \left( {x + 3} \right)\left( {\sqrt {2x + 4}  + \sqrt {x + 1} } \right)\\ \Leftrightarrow \left( {x + 3} \right)\left( {\sqrt {2x + 1}  + \sqrt {x + 4} } \right) \le \left( {x + 3} \right)\left( {\sqrt {2x + 4}  + \sqrt {x + 1} } \right)\\ \Leftrightarrow \left( {x + 3} \right)\left( {\sqrt {2x + 1}  + \sqrt {x + 4}  - \sqrt {2x + 4}  - \sqrt {x + 1} } \right) \le 0\\ \Leftrightarrow \sqrt {2x + 1}  + \sqrt {x + 4}  - \sqrt {2x + 4}  - \sqrt {x + 1}  \le 0\,\,\,\,\,\left( {do\,\,\,x + 3 > 0\,\,\,\forall x \ge  - \frac{1}{2}} \right)\\ \Leftrightarrow \sqrt {2x + 1}  + \sqrt {x + 4}  \le \sqrt {2x + 4}  + \sqrt {x + 1} \\ \Leftrightarrow 3x + 5 + 2\sqrt {\left( {2x + 1} \right)\left( {x + 4} \right)}  \le 3x + 5 + 2\sqrt {\left( {2x + 4} \right)\left( {x + 1} \right)} \\ \Leftrightarrow \left( {2x + 1} \right)\left( {x + 4} \right) \le \left( {2x + 4} \right)\left( {x + 1} \right)\\ \Leftrightarrow 2{x^2} + 9x + 4 \le 2{x^2} + 6x + 4\\ \Leftrightarrow 3x \le 0 \Leftrightarrow x \le 0\end{array}\)        

Kết hợp ĐKXĐ \( \Rightarrow x \in \left[ { - \frac{1}{2};0} \right] \subset \left( { - \frac{2}{3};\frac{1}{2}} \right)\)

Chọn A.

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com