Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số phức \(z\) thỏa mãn \(3 - 2i + \dfrac{{\overline z }}{i}\) là số thực và \(\left| {z + i} \right| =

Câu hỏi số 338626:
Vận dụng

Số phức \(z\) thỏa mãn \(3 - 2i + \dfrac{{\overline z }}{i}\) là số thực và \(\left| {z + i} \right| = 2\). Phần ảo của \(z\) là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:338626
Phương pháp giải

Đặt \(z = a + bi\,\,\left( {a,b \in \mathbb{R}} \right) \Rightarrow \overline z  = a - bi\).

Giải chi tiết

Giả sử \(z = a + bi\,\,\left( {a,b \in \mathbb{R}} \right) \Rightarrow \overline z  = a - bi\).

Theo bài ra ta có: \(3 - 2i + \dfrac{{\overline z }}{i} = 3 - 2i - \left( {a - bi} \right)i = 3 - 2i - ai - b\) là số thực \( \Rightarrow  - 2 - a = 0 \Leftrightarrow a =  - 2\).

\(\begin{array}{l} \Rightarrow z =  - 2 + bi \Rightarrow \left| {z + i} \right| = \left| { - 2 + bi + i} \right| = \left| { - 2 + \left( {b + 1} \right)i} \right| = 2\\ \Leftrightarrow \sqrt {4 + {{\left( {b + 1} \right)}^2}}  = 2 \Leftrightarrow 4 + {\left( {b + 1} \right)^2} = 4 \Leftrightarrow b + 1 = 0 \Leftrightarrow b =  - 1\end{array}\)

Vậy \({\mathop{\rm Im}\nolimits} z = b =  - 1\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com