Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hai dao động điều hòa cùng phương với các phương trình lần lượt là  \({x_1} = {A_1}\cos

Câu hỏi số 338930:
Vận dụng cao

Cho hai dao động điều hòa cùng phương với các phương trình lần lượt là  \({x_1} = {A_1}\cos \left( {\omega t + 0,35} \right)(cm)\)

 và \({x_2} = {A_2}\cos \left( {\omega t - 1,572} \right)(cm)\) . Dao động tổng hợp của hai dao động này có phương trình là

\(x = 20\cos \left( {\omega t + \varphi } \right)(cm)\)

. Giá trị cực đại của (A1 + A2) gần giá trị nào nhất sau đây?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:338930
Phương pháp giải

Công thức tính biên độ của dao động tổng hợp là :  

\({A^2} = A_1^2 + A_2^2 + 2{A_1}{A_2}.\cos \Delta \varphi \)

Áp dụng BĐT Cô - si

Giải chi tiết

Biên độ của dao động tổng hợp :\({A^2} = A_1^2 + A_2^2 + 2{A_1}{A_2}.\cos \Delta \varphi \)

Ta có :

${20^2} = A_1^2 + A_2^2 + 2{A_1}{A_2}.\cos \left( { - 1,572 - 0,35} \right) = A_1^2 + A_2^2 - 0,688{A_1}{A_2} = {({A_1} + {A_2})^2} - 2,688{A_1}{A_2}$

Áp dung BĐT Cô – si ta có :

\(\begin{array}{l}
{A_1}{A_2} \le \frac{{{{({A_1} + {A_2})}^2}}}{4} \Rightarrow {20^2} \le {({A_1} + {A_2})^2}(1 - \frac{{2,688}}{4})\\
\Rightarrow {({A_1} + {A_2})_{\max }} = 34,92 \approx 35cm
\end{array}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com