Gọi \(M = \cos \left( {a + b} \right)\cos \left( {a - b} \right) - \sin \left( {a + b} \right)\sin \left( {a - b}
Gọi \(M = \cos \left( {a + b} \right)\cos \left( {a - b} \right) - \sin \left( {a + b} \right)\sin \left( {a - b} \right)\) thì:
Đáp án đúng là: B
Quảng cáo
+) Sử dụng công thức \(\cos a\cos b = \dfrac{1}{2}\left[ {\cos \left( {a + b} \right) + \cos \left( {a - b} \right)} \right]\); \(\sin a\sin b = - \dfrac{1}{2}\left[ {\cos \left( {a + b} \right) - \cos \left( {a - b} \right)} \right]\).
+) Sử dụng công thức nhân đôi \(\cos 2a = 1 - 2{\sin ^2}a\).
Học sinh có thể sử dụng công thức \(M = \cos \left( {a + b} \right)\cos \left( {a - b} \right) - \sin \left( {a + b} \right)\sin \left( {a - b} \right)\)\( = \cos \left[ {\left( {a + b} \right) + \left( {a - b} \right)} \right] = \cos 2a\) . Do đây là đề thi sử dụng công thức biến đổi tổng thành tích và tích thành tổng nên chúng tôi giới thiệu cách làm như trên.
Đáp án cần chọn là: B
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












