Cho hình vuông \(OABC\) có cạnh bằng \(4\) được chia thành hai phần bởi đường parabol \(\left( P
Cho hình vuông \(OABC\) có cạnh bằng \(4\) được chia thành hai phần bởi đường parabol \(\left( P \right)\) có đỉnh tại \(O\). Gọi \(S\) là hình phẳng không bị gạch (như hình vẽ). Tính thể tích \(V\) của khối tròn xoay khi cho phần \(S\) quay quanh trục \(Ox\)
Đáp án đúng là: D
Quảng cáo
- Viết phương trình parabol.
- Sử dụng công thức tính thể tích khối tròn xoay khi quay hình phẳng \(\left( H \right)\) giới hạn bởi các đồ thị \(y = f\left( x \right),y = g\left( x \right)\), các đường thẳng \(x = a,x = b\) là \(V = \pi \int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} \).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












