Xét vị trí tương đối của hai đường thẳng: \({d_1}:\,\,x - 2y + 1 = 0\) và \({d_2}:\,\,\, - 3x + 6y -
Xét vị trí tương đối của hai đường thẳng: \({d_1}:\,\,x - 2y + 1 = 0\) và \({d_2}:\,\,\, - 3x + 6y - 10 = 0.\)
Đáp án đúng là: B
Quảng cáo
Cho hai đường thẳng có phương trình tổng quát như sau: \(\left\{ \begin{array}{l}{\Delta _1}:\,\,{a_1}x + {b_1}y + {c_1} = 0\,\,\,\left( {{a_1}^2 + {b_1}^2 \ne 0} \right)\\{\Delta _2}:\,\,{a_2}x + {b_2}y + {c_2} = 0\,\,\,\left( {{a_2}^2 + {b_2}^2 \ne 0} \right)\end{array} \right.\)
Ta xét nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}{a_1}x + {b_1}y + {c_1} = 0\\{a_2}x + {b_2}y + {c_2} = 0\end{array} \right.\)
+) Hệ có một nghiệm \(\left( {{x_0};\,{y_0}} \right)\) duy nhất \( \Leftrightarrow {\Delta _1}\) cắt \({\Delta _2}\) tại \(M\left( {{x_0};\,{y_0}} \right)\)
+) Hệ vô nghiệm \( \Leftrightarrow {\Delta _1}//{\Delta _2}\)
+) Hệ có vô số nghiệm \( \Leftrightarrow {\Delta _1} \equiv {\Delta _2}\)
HS có thể giải bằng cách:
Đường thẳng \({d_1}\) có VTPT \(\overrightarrow {{n_1}} = \left( {1; - 2} \right)\) và \({d_2}\) có VTPT \(\overrightarrow {{n_2}} = \left( { - 3;\,6} \right) = - 3\left( {1; - 2} \right)//\overrightarrow {{n_1}} \Rightarrow {d_1}//{d_2}.\)
Đáp án cần chọn là: B
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












