Xét các khẳng định sau i) Nếu hàm số \(y = f(x)\) có đạo hàm dương với mọi x thuộc tập
Xét các khẳng định sau
i) Nếu hàm số \(y = f(x)\) có đạo hàm dương với mọi x thuộc tập số D thì \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\forall {x_1},{x_2} \in D,{x_1} < {x_2}\)
ii) Nếu hàm số \(y = f(x)\) có đạo hàm âm với mọi x thuộc tập số D thì \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right)_{}^{}\forall {x_1},{x_2} \in D,{x_1} < {x_2}\)
iii) Nếu hàm số \(y = f(x)\) có đạo hàm dương với mọi x thuộc \(\mathbb{R}\) thì \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)_{}^{}\forall {x_1},{x_2} \in \mathbb{R},{x_1} < {x_2}\)
iv) Nếu hàm số \(y = f(x)\) có đạo hàm âm với mọi x thuộc \(\mathbb{R}\) thì \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right)_{}^{}\forall {x_1},{x_2} \in \mathbb{R},{x_1} < {x_2}\)
Số khẳng định đúng là
Đáp án đúng là: B
Quảng cáo
Dựa vào định nghĩa hàm số đồng biến và nghịch biến.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












