Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện gần đều \(ABCD\), biết \(AB = CD = 5,AC = BD = \sqrt {34} ,AD = BC = \sqrt {41} \). Tính sin

Câu hỏi số 344447:
Vận dụng

Cho tứ diện gần đều \(ABCD\), biết \(AB = CD = 5,AC = BD = \sqrt {34} ,AD = BC = \sqrt {41} \). Tính sin của góc giữa hai đường thẳng \(AB\) và \(CD\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:344447
Giải chi tiết

Gọi I, J, K, P lần lượt là trung điểm của AD, AC, BC, BD.

Khi đó, AB // IP // JK, CD // IJ // KP

\( \Rightarrow \) \(\left( {\widehat {AB;CD}} \right) = \left( {\widehat {IP;KP}} \right)\)

Ta có: \(KP = \dfrac{1}{2}CD = \dfrac{5}{2}\), \(IP = \dfrac{1}{2}AB = \dfrac{5}{2}\)

\(A{K^2} = \dfrac{{A{B^2} + A{C^2}}}{2} - \dfrac{{B{C^2}}}{4} = \dfrac{{25 + 34}}{2} - \dfrac{{41}}{4} = \dfrac{{77}}{4} = D{K^2}\)

Tam giác \(AKD\) cân tại K, \(KI\) là trung tuyến \( \Rightarrow KI \bot AD \Rightarrow I{K^2} = A{K^2} - A{I^2} = \dfrac{{77}}{4} - \dfrac{{41}}{4} = 9\)

\(\cos \widehat {IPK} = \dfrac{{I{P^2} + K{P^2} - I{K^2}}}{{2.IP.KP}} = \dfrac{{\dfrac{{25}}{4} + \dfrac{{25}}{4} - 9}}{{2.\dfrac{5}{2}.\dfrac{5}{2}}} = \dfrac{7}{{25}} > 0 \Rightarrow \widehat {IPK} < {90^0}\)

\( \Rightarrow \left( {\widehat {AB;CD}} \right) = \left( {\widehat {IP;KP}} \right) = \widehat {IPK} \Rightarrow \sin \left( {\widehat {AB;CD}} \right) = \sin \widehat {IPK} = \sqrt {1 - {{\left( {\dfrac{7}{{25}}} \right)}^2}}  = \dfrac{{24}}{{25}}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com