Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Cho tam giác \(ABC\) vuông cân tại \(A\), đường cao \(AH\,\,\left( {H \in BC} \right)\). Trên \(AC\) lấy

Câu hỏi số 344462:
Vận dụng

Cho tam giác \(ABC\) vuông cân tại \(A\), đường cao \(AH\,\,\left( {H \in BC} \right)\). Trên \(AC\) lấy điểm \(M\,\,\left( {M \ne A,\,\,M \ne C} \right)\) và vẽ đường tròn đường kính \(MC\). Kẻ \(BM\) cắt \(AH\) tại \(E\) và cắt đường tròn tại \(D\). Đường thẳng \(AD\) cắt đường tròn tại \(S\). Chứng minh rằng:

a) Tứ giác \(CDEH\) là tứ giác nội tiếp.

b) \(\angle BCA = \angle ACS\).

Quảng cáo

Câu hỏi:344462
Giải chi tiết

a) Tứ giác \(CDEH\) là tứ giác nội tiếp.

Ta có : \(\angle EHC = {90^0}\) (\(AH\) là đường cao của \(\Delta ABC\))

Ta có \(\angle CDM = {90^0}\) (góc nội tiếp chắn nửa đường tròn đường kính \(MC\)).

\( \Rightarrow \angle CDE = {90^0}\).

Xét tứ giác \(CDEH\) có : \(\angle CDE + \angle CHE = {90^0} + {90^0} = {180^0}\), suy ra tứ giác \(CDEH\) là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng \({180^0}\)).

b) \(\angle BCA = \angle ACS\).

Ta có \(\angle CDE = {90^0}\,\,\left( {cmt} \right) \Rightarrow \angle CDB = {90^0}\).

Xét tứ giác \(ADCB\) có : \(\angle CDB = \angle CAB = {90^0} \Rightarrow \) Tứ giác \(ADCB\) là tứ giác nội tiếp (Tứ giác có 2 đỉnh kề nhau cùng nhìn một cạnh dưới các góc bằng nhau).

\( \Rightarrow \angle BDA = \angle BCA\) (hai góc nội tiếp cùng chắn cung \(AB\)).

Tứ giác \(CSDM\) nội tiếp đường tròn đường kính \(CM \Rightarrow \angle MCS = \angle ADM = \angle BDA\) (góc ngoài và góc trong tại đỉnh đối diện của tứ giác nội tiếp).

\( \Rightarrow \angle BCA = \angle MCS = \angle ACS\,\,\left( {dpcm} \right)\).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com